

Hands-On Ethical Hacking and Network Defense

Chapter 3 Network and Computer Attacks

Last modified 2-3-18

Objectives

Describe the different types of malicious software Describe methods of protecting against malware attacks Describe the types of network attacks Identify physical security attacks and vulnerabilities

Malicious Software (Malware)

Network attacks prevent a business from operating

Malicious software (Malware) includes

- Virus
- Worms
- Trojan horses
- Goals
- Destroy data
- Corrupt data
- Shutdown a network or system

Viruses

Virus attaches itself to an executable file
Can replicate itself through an executable program
Needs a host program to replicate
No foolproof method of preventing them

Antivirus Software

Detects and removes viruses
Detection based on virus signatures
Must update signature database periodically
Use automatic update feature

ected tems	Infection	Туре	Status	Info
(:\Users\Sam\Desktop\eicar.c	the EICAR test string	File	Quarantined	<u>Info</u>

Common Viruses

Virus	Description
Gumblar	First detected in March 2009, it spread by mass hacking of hundreds of thousands of Web sites, which then exploited visiting browsers via Adobe PDF and Flash vulnerabilities. The malware steals FTP credentials that are used to further compromise Web sites the victim maintains. It also hijacks Google searches and blocks access to antivirus update sites to prevent removal. Recent variations install a backdoor that attempts to connect to a botnet.
Luckysploit	It's actually the attack side of a sophisticated cybercrime toolkit that spreads when Web surfers visit a hacked Web site hosting the malware. It uses obfuscated JavaScript code and asymmetric key encryption to prevent detection. The JavaScript code also targets victims based on recent vulnerabilities in OSs, applications, browser plug-ins, and so on.
Zlob	Purported to be the work of the Russian Business Network, Zlob has dozens of variants, some of which spread by masquerading as a codec needed to view an enticing video. Several variants are associated with "scareware," fake antivirus downloads that change home router settings to redirect victims to more malicious sites.
Gpcode	This "ransomware" virus detected in 2008 isn't widespread but is unique because it uses practically unbreakable 1024-bit asymmetric key encryption to hide a user's documents on the computer and hold them for ransom until the victim pays to get the encryption key.

Base 64 Encoding

Used to evade anti-spam tools, and to obscure passwords Encodes six bits at a time (0 – 63) with a single ASCII character • A - Z: 0 − 25 • a – z: 26 – 51 1 − 9: 52 − 61 + and - 62 and 63 See links Ch 3a, 3b

Base64 Example

Input String	0	R	A	С	L	E	-	
Binary Representation	01001111 ₂	01010010 ₂	01000001 ₂	01000011 ₂	01001100 ₂	01000101 ₂	-	
After regrouping into 6-bit groups. [Binary and decimal equivalents are shown.]	0100112 [1910]	1101012 [5310]	001001 2 [910]	0000012 [110]	010000 ₂ [16 ₁₀]	110100 ₂ [52 ₁₀]	1100012 [4910]	000101\2 [510]
After mapping the above eight 8-bit bytes using Table 1	т	1	J	в	Q	0	x	F

Base64 encoded string : T1JBQ0xF

ORACLE -> T1JBQ0xF Link Ch 3r

Viruses (continued)

Commercial base 64 decoders Shell

Executable piece of programming code
Should not appear in an e-mail attachment

Macro Viruses

Virus encoded as a macro Macro Lists of commands Can be used in destructive ways Example: Melissa Appeared in 1999 It is very simple – see link Ch 3c for source code

Writing Viruses

Even nonprogrammers can create macro viruses Instructions posted on Web sites Virus creation kits available for download (see link Ch 3d) Security professionals can learn from thinking like attackers But don't create and release a virus! People get long prison terms for that.

Angler Exploit Kit

Link Ch 3z

C 🟠 🕯 Secure https://arstechnica.com/information-technology/2018/02/threat-or-menace-autosploit-tool-sparks-fears-of-empowered-script-kiddies/ 🔍

SUBSCRIPTIONS

SCRIPT ERROR -

Threat or menace? "Autosploit" tool sparks fears of empowered "script kiddies"

400 lines of Python code + Shodan + Metasploit equals a whole heap of hand-wringing.

SEAN GALLAGHER - 2/1/2018, 4:45 AM

Link Ch 3za, 3zb

Worms

Worm Replicates and propagates without a host, often through email Infamous examples Code Red Nimda Can infect every computer in the world in a short time At least in theory

Spread of Code Red Worm

See link Ch 3u

ATM Machine Worms

Cyberattacks against ATM machines

Slammer and Nachi worms

- Trend produces antivirus for ATM machines
 See links Ch 3g, 3h, 3i
- Nachi was written to clean up damage caused by the Blaster worm, but it got out of control
 See link Ch 3j

 Diebold was criticized for using Windows for ATM machines, which they also use on voting machines

Important Worms

Worm	Description
Storm	Detected in January 2007, it's spread by automatically generated e-mail messages. It's estimated that this botnet Trojan program and its variants infected millions of systems.
Mytob	Detected in 2005, it's a hybrid worm with backdoor capabilities spread by mass e-mailing and exploiting Windows vulnerabilities.
Waledac	This e-mail worm harvests and forwards passwords and spreads itself in an e-mail with an attachment called eCard.exe. It has many variants that can be controlled remotely. A recent variant uses a geographic IP address lookup to customize the e-mail message so that it looks like a Reuters news story about a dirty bomb that exploded in a city near the victim.
Conficker	Detected in late 2008, this botnet worm and its variants propagated through the Internet by using a Microsoft network service vulnerability. It updates itself dynamically but can be detected remotely with a standard port scanner, such as Nmap, and a special Conficker signature plug-in.
Mod_ssl	Detected in 2002, this worm affects Linux systems running Apache OpenSSL. It scans for vulnerable systems on TCP port 80 and attempts to deliver the exploit code through TCP port 443. A system infected with this worm begins spreading it to other systems on a network. See VU#102795 and CA-2002-23 at www.kb.cert.org/vuls for more information; this site cross-references vulnerabilities listed at www.cve.mitre.org.
Slammer	Detected in 2003, this worm was purported to have shut down more than 13,000 ATMs of one of the largest banks in America by infecting database servers located on the same network.

Trojan Programs

Insidious attack against networks
 Disguise themselves as useful programs
 Hide malicious content in program
 Backdoors
 Rootkits
 Allow attackers remote access

Firewalls

Identify traffic on uncommon ports Can block this type of attack, if your firewall filters outgoing traffic Windows Firewall in XP SP2, Vista, and Win 7 does not filter outgoing traffic by default Trojan programs can use known ports to get through firewalls • HTTP (TCP 80) or DNS (UDP 53)

Table 3-3 Trojan programs and ports

Trojan Program	TCP Ports Used
W32.Korgo.A	13, 2041, and 3067
Backdoor.Rtkit.B	445
Backdoor.Systsec, Backdoor.Zincite.A	1034
W32.Beagle.Y@mm	1234
Trojan.Tilser	6187
Backdoor.Hacarmy.C, Backdoor.Kaitex,	6667
Backdoor.Clt, Backdoor.IRC.Flood.E,	
Backdoor.Spigot.C, Backdoor.IrcContact,	
Backdoor.DarkFtp, Backdoor.Slackbot.B	
Backdoor.Danton	6969
Backdoor.Nemog.C	4661, 4242, 8080, 4646, 6565, and 3306

Windows DLL Hijacking Vulnerability

DLL files are loaded from the incorrect directory Affects over 200 applications on every version of Windows No good patch yet (8-31-2010)Link Ch 3s, 3t, 3w

88						reet@Mi -	Shell - Ko	nsole		
Sessio	on Edit V	iew I	lookmarks	Settings	Help					
[*]										
	Using UR	U.: E	ttp://0	.0.0.0:81	V					
	Local 1	Pa	ttp://1	72.16.30	16:80/					
	Server 1	tart	ed.							
nsf (exploit	webd	ev_dll_	hijacker	A [*]	172.16.3	0.229:492	59 GET => I	REDIRECT (/	documents/)
	172.16.1	10.22	9:49259	GET => 0	MTA (/	favicen.i	co)			
	172.16.1	10.22	9:49262	OPTIONS	/docum	ents				
	172.16.1	10.22	9:49262	PROPFING	/docur	ments				
	172.16.1	10.22	9:49262	PROPFIN	=> 30	1 (/docum	ents)			
	172.16.	10.22	9:49262	PROPFING	/docu	ments/				
	172.16.	10.22	9:49262	PROPFING) => 20	7 Directo	ry (/docu	ments/)		
	172.16.1	0.22	9149262	PROPFIN	a => 20	7 Top-Lev	el Direct	ery		
	172.16.1	0.22	9:49262	PROPFIN	/docu	ments				
	172.16.1	10.22	9:49262	PROPFIN	a => 30	1 (/docum	ents)			
	172.16.1	10.22	9:49262	PROPFIN	/decu	ments/				
	172.16.	10.22	9:49262	PROPFING) => 20	7 Directo	ry (/docu	ments/)	The m	nalicious DLL get
	172.16.3	10.22	9:49262	PROPEIN) => 20	7 Top-Lev	el Direct	ory	loaded a	and executed on
	172.16.3	10.22	9149262	PROPFIN	/decu	ments			Todada a	dina executea en
	172.16.	10.22	9:49262	PROPFING	2 mg 30	1 (/docum	ents)		VIC	tim machine
	172.10.1	10.22	9:49262	PROPPING	/ 00-501	negts/-	< 1t	racl		
	172.16.1	10.22	9149262	PROPP IN	- 20	7 Directo	ry t/docu	ments/)		
	172.16.	10.22	9:49262	PROPPING	0 => 20	7 Top-Lev	el Direct	ory		
	172.16.3	10.ZZ	9:49262	PROPFIN	7 /decu	ments				
	172.16.	10.22	9:49262	PROPFIN	1 => 30	1 (/docum	ents)			
	172.16.1	10.22	9:49262	PROPFING	/docu	ments/				
	172.16.1	0.22	9:49262	PROPP IN		/ Directo	ry t/docu	ments/)		
	172.16.1	0.22	4.49262	PROPP INC	1 83 20	7 top-Lev	et pirect	ary		
	172.16.1	0.22	9:49262	PROPP INC	700CU	ments/des	atop.ini	ton inil		
	172.10.1	0.22	*:**282 *:*****	DRODE THE	144	4 17docus	ents/desk	cob.1411		
	172.10.1			DROPP IN	70000	Netters				
	172.10.1	0.22	0-80363	PROPT 1ND	an 30.	E L/docum	en131			
	172.10.1	0.22	0-40363	PROPERTY	70000	7. Disecto	me f.ldeeu			
	112.19.1	9-66	7.97696	PROPERTY AND	49 29	L DTLECTO	<pre>+y t/docu</pre>	men 1.57 J		
30	Shell									
11 2		-			of roots	ht: Shell	- Ker	- II.	all success	11.

Sends information from the infected computer to the attacker

- Confidential financial data
- Passwords
- PINs
- Any other stored data

Can register each keystroke entered (keylogger)
 Prevalent technology
 Educate users about spyware

Deceptive Dialog Box

Spyware Alert

Warning - your computer may have spyware or adware installed. To scan your computer for such

infections, click yes below.

Figure 3-2 A spyware initiation program

Adware

Similar to spyware Can be installed without the user being aware Sometimes displays a banner Main goal Determine user's online purchasing habits Tailored advertisement Main problem Slows down computers

Protecting Against Malware Attacks

Difficult task

 New viruses, worms, Trojan programs appear daily
 Antivirus programs offer a lot of protection
 Educate your users about these types of attacks

Virus Alert

Microsoft Security Essentials	Alert			×
Potential threat det	ails			
Microsoft Security Essentials detected p computer. Your access to these items m more. <u>What do the alert levels mean?</u>	otential threats that ay be suspended un	might compromise your p til you take an action. Clic Recommendation	rivacy or damage your k 'Show details' to learn Status	1
Virus:DOS/EICAR Test File	Severe	Remove	 Suspended 	
Show details >>	Clean co	mputer Apply actio	ns Close)

Binary

Kanooty

Educating Your Users

 Structural training
 Includes all employees and management
 E-mail monthly security updates
 Update virus signature database automatically

Educating Your Users

SpyBot and Ad-Aware Help protect against spyware and adware Windows Defender is excellent too Firewalls Hardware (enterprise solution) Software (personal solution) Can be combined Intrusion Detection System (IDS) Monitors your network 24/7

FUD

Fear, Uncertainty and Doubt

- Avoid scaring users into complying with security measures
- Sometimes used by unethical security testers
- Against the OSSTMM's Rules of Engagement
- Promote awareness rather than instilling fear
 - Users should be aware of potential threats
 - Build on users' knowledge

Liz Hafalia / The Ovoricle Computer viruses discovered in San Francisco City College servers have been stealing personal information for years.

View Larger Image

information and other data from perhaps tens > Tweet of thousands of 516 students, faculty and administrators at City f share College of San 11 Francisco have been stolen in what is being +1 called "an infestation" of computer viruses with origins in criminal networks in Russia, China and other countries, The Chronicle has learned.

Link Ch 3v

Intruder Attacks on Networks and Computers

Attack

 Any attempt by an unauthorized person to access or use network resources

Network security

Security of computers and other devices in a network

Computer security

 Securing a standalone computer--not part of a network infrastructure

Computer crime

Fastest growing type of crime worldwide

Denial-of-Service Attacks

Denial-of-Service (DoS) attack
Prevents legitimate users from accessing network resources
Some forms do not involve computers, like feeding a paper loop through a fax machine
DoS attacks do not attempt to access information

Cripple the network

Make it vulnerable to other type of attacks

Testing for DoS Vulnerabilities

Performing an attack yourself is not wise
You only need to prove that an attack could be carried out

Distributed Denial-of-Service Attacks

Attack on a host from multiple servers or workstations

- Network could be flooded with billions of requests
 - Loss of bandwidth
 - Degradation or loss of speed

Often participants are not aware they are part of the attack

They are remote-controlled "zombies"

CloudFlare

Stops DDoS attacks for free

Without CloudFlare

With CloudFlare

Buffer Overflow Attacks

Vulnerability in poorly written code
 Code does not check predefined size of input field

Goal

Fill overflow buffer with executable code

- OS executes this code
- Can elevate attacker's permission to Administrator or even Kernel

Programmers need special training to write secure code

Buffer overflow	Description
Solaris X Window Font Service	This buffer overflow affects Sun Microsystems Solaris 2.5.1, 2.6, 7, 8, and 9 and Solaris X Window Font Service systems. It allows attackers to run arbitrary code in memory. See VU#312313 (www.kb.cert.org/vuls) for more information.
Windows Server	Microsoft Security Bulletin MS08-067 (www.microsoft.com/technet/security/Bulletin/ MS08-067.mspx) discusses this buffer overflow vulnerability, which makes it possible for attackers to run arbitrary code placed in memory. This vulnerability allowed the Conficker worm to spread.
Remote Sendmail	This buffer overflow vulnerability affects all versions of Sendmail Pro and some versions of Sendmail Switch. The vulnerability allows attackers to gain root privileges on the attacked system. See VU#398025 for more details.
Windows Messenger Service	The Windows Messenger Service has a buffer overflow vulnerability that enables the attacker to run arbitrary code and gain privileges to the attacked system.
Windows Help and Support Center	Contains buffer overflow in code used to handle Human Communications Protocol (HCP). A buffer overflow vulnerability in the Help and Support Center function affects Windows XP and Windows Server 2003. The vulnerability allows attackers to create a URL that could run arbitrary code at the local computer security level when users enter that URL.
Sendmail	All systems running Sendmail versions before 8.12.10, including UNIX and Linux systems, are vulnerable to a buffer overflow attack that enables attackers to possibly elevate privileges to that of the root user.
Microsoft RPCSS Service	There are two buffer overflow vulnerabilities in the RPCSS Service, which handles DCOM messages. This service is enabled by default on many versions of Windows, but the vulnerability affects only Windows 2000 systems. For more information, see VU#483492 and VU#254236.
Internet Explorer	A total of five vulnerabilities affect Microsoft systems running Internet Explorer 5.01, 5.50, and 6.01. For more information, see Microsoft Security Bulletin MS03-032.

Ping of Death Attacks

Type of DoS attack

Not as common as during the late 1990s

How it works

- Attacker creates a large ICMP packet
 More than 65,535 bytes
- Large packet is fragmented at source network
- Destination network reassembles large packet
- Destination point cannot handle oversize packet and crashes
- Modern systems are protected from this (Link Ch 3n)

AUGUST 13, 2013

Microsoft Patch Tuesday: The Ping of Death returns, IPv6-style

This month's round of Microsoft patches address must-fix vulnerabilities in Internet Explorer and Microsoft Mail

By Joab Jackson | IDG News Service

Ping Fragmentation Example

00	0					🗑 kali-sam-	-orig						2
		<i>₽</i> €	• 🖬 👜	4) 🗇 🕄	ñ 2 ·	0							٥
Appl	licati	ons Places	🧟 🗵			Sat Jan 31, 10	:07 AM			2	u(1))	<u>-</u>	🗬 root
						[Wireshark 1.8.	5]						D X
File	Edit	View Go (Capture An	alyze Statistics	Telephon	Tools Interna	ls Help						
8	۴,	e e e	() 🖴 🤞	⊾ × C ∈	9 9 4	8 8 9 T	± [0	0 🖭	🌠 🗹 🕵	8	
Filte	r: [4	Expression	Clear Ap	ply Save	e				
No.		Time	Source		Destinatio	n	Protocol	Length	Info				2
	120	7.459406000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=44-
	121	7.459487000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=590
	123	7.459543000	192,168,1	19,189	8.8.8.8		TPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=99
	124	7,459651000	192,168,1	19,189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1. 0	ff=10:
	125	7,459705000	192,168,1	19,189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1. 0	ff=118
	126	7.459759000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=13:
	127	7,459813000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1. 0	ff=14i
	128	7,459867000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1. 0	ff=16:
	129	7.459920000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=17.
	130	7.459973000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=190
	131	7.460027000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=20:
	132	7.462021000	192,168,1	19.2	192.168.	119,189	ICMP	578	Destinatio	n unreachabl	e (Fragmenta	tion	needer
	133	8,461505000	192.168.1	19.189	8.8.8.8		IPv4	1514	Fragmented	IP protocol	(proto=ICMP	1, 0	ff=0,
	13/	8 461603000	102 169 1	10 180	0000		TDv/A	1517	Franmantad	TD protocol	Incoto-TCMD	1 0	44-14:0
<u> </u>	_												2
P Fr	ane	147: 1514 byt	tes on wire	(12112 bits)	, 1514 byt	es captured (12	2112 bits)) on inte	ertace O				
PEt	hern	et II, Src: \	/mware_69:7	a:36 (00:0c:2	9:69:7a:36), Dst: Vmware_	e3:22:11	(00:50:5	56:e3:22:†1	.)			
P In	tern	et Protocol V	Version 4,	SFC: 192.168.	119.189 (1	92.168.119.189)	, Dst: 8.	.8.8.8 (8	8.8.8.8)				
V Da	ta (1480 Dytes)	.desetf.of.14	i of of Africian Tra	d of a flat of d	6.66							
	Lon	ath: 1400]	edeeeiioiiii	2131415101710	relatorcio	rerr							
	(Len	iğti: 14801									r00	t@kal	li: ~
							File	Edit Vie	w Search	Terminal He	d n		
							1.0.5	LOIL TH	W Search	nithed a	icp	_	124
0000	00	50 56 e3 22 1	f1 00 0c 3	29 69 7a 36 06	3 00 45 00	.PV.*)ize	135	packet	s trans	mitted, 0	received	I, +.	134 e
0010	05				7 bd 08 08	*.@. 0	.w. S						
0020	80		ebeced (ee ef f0 f1 f2	2 13 14 15	• • • • • • • • • • • • •	• • •				_		
0040	06	07 08 09 0a	06 0c 0d (De Of 10 11 12	2 13 14 15		root	@kali:	~# ping	-s 60000	8.8.8.8		
0 💆	Fran	me (frame), 151	4 bytes	Packe	Profile: De	fault							
	root	@kali: -	5. [r	oot@kali: ~]	1	eth0 [Wireshark	: 1.8				64		

Fragrouter Demo

Kali Linux fragrouter –F 1 Another VM on same network, set default route to Kali's IP address All network traffic will be fragmented at layer 3 into 8-byte packets Often bypasses IDS

Session Hijacking

Enables attacker to interrupt a TCP session
 Taking over another user's session

Addressing Physical Security

 Protecting a network also requires physical security
 Inside attacks are more likely than attacks from outside the company

Insider Threats

CCSF's CTO

An interpretive image of the "no confidence" petition. Art by Jessica Kwan/The Guardsman

San Francisco's NetAdmin

Conrad del Rosario Assistant District Attorney San Francisco District Attorney's Office White Collar Crimes Division

Case study on the Terry Childs case & more

image from BoingBoing

Cyber-Bullying Accusation

Company Goes After One Of The World's Biggest Cyber Bully's Sam Bowne

Company goes after one of the world's biggest cyber bully's sam bowne professor at the city college of san francisco city college employee uses school networks to commit cyber bullying

FOR IMMEDIATE RELEASE

PRLog (Press Release) - Jan 07, 2011 -COMPANY GOES AFTER ONE OF THE WORLD'S BIGGEST CYBER BULLY'S SAM BOWNE PROFESSOR AT THE CITY COLLEGE OF SAN FRANCISCO

Insider Threats

¾ of the serious attacks on me were from industry insiders
 Anonymous attacked one of my servers,

but failed

Because an Anonymous insider warned me.

Keyloggers

Used to capture keystrokes on a computer Hardware Software Software Behaves like Trojan programs Hardware Easy to install Goes between the keyboard and the CPU KeyKatcher and KeyGhost

Document - WordPad	_ 문 ×
Pie Edit Vew Insert Format Help	_
	_
keykatcher 64K 3.9 065394 bytes free 1-View Memory 2-Erase Memory 3-Change Password 4-Disable recording	
5-NETPatrol Output 6-Search for String 7-ELLO Bob. This is private, so don't tell anyone. I'm quiting <bs><bs><bs><bs><bs><bs><bs><bs><bs><bs></bs></bs></bs></bs></bs></bs></bs></bs></bs></bs>	
-Mikekeykatch <85><85><85><85><85><85>	
keykatcher 64K 3.9 065394 bytes free 1-View Memory 2-Erase Memory 3-Change Password 4-Disable mecording 5-NETPatrol Output 6-Search for String 7-Exit	
1	
An endpy, protos e a	part
Figure 3-5 An e-mail message captured by KeyKatcher	

Document - WordPad	<u>_18</u> ×
DORD OR N X DR. D	
g	
vghostlog	
Hit 'c' to slow menu	
KayGhost SX Std 512KB v8.9 www.kayghost.com	
Menu >	
1) Entire download 2) Section download 3) Erase 4) Format 5) Options 6) Speed 7) Password change 8) eXit	
Select >	
	1
Por Help, press F1	NUM 2

Figure 3-6 The KeyGhost menu

Keyloggers (continued)

Protection
 Software-based
 Antivirus
 Hardware-based
 Random visual tests
 Look for added hardware
 Superglue keyboard connectors in

Behind Locked Doors

Lock up your servers
Physical access means they can hack in
Consider Ophcrack – booting to a CD-based OS will bypass almost any security

Lockpicking

Average person can pick deadbolt locks in less than five minutes

After 30 min. of practice

Experienced hackers can pick deadbolt locks in under 30 seconds
Bump keys are even easier (Link Ch 3o)

Card Reader Locks

Keep a log of who enters and leaves the room

Security cards can be used instead of keys for better security
 Image from link Ch 3p

Binary

Kanooty